LM231A/LM231/LM331A/LM331
Precision Voltage-to-Frequency Converters

General Description
The LM231/LM331 family of voltage-to-frequency converters are ideally suited for use in simple low-cost circuits for analog-to-digital conversion, precision frequency-to-voltage conversion, long-term integration, linear frequency modulation or demodulation, and many other functions. The output when used as a voltage-to-frequency converter is a pulse train at a frequency precisely proportional to the applied input voltage. Thus, it provides all the inherent advantages of the voltage-to-frequency conversion techniques, and is easy to apply in all standard voltage-to-frequency converter applications. Further, the LM231A/LM331A attain a new high level of accuracy versus temperature which could only be attained with expensive voltage-to-frequency modules. Additionally the LM231/331 are ideally suited for use in digital systems at low power supply voltages and can provide low-cost analog-to-digital conversion in microprocessor-controlled systems. And, the frequency from a battery powered voltage-to-frequency converter can be easily channeled through a simple photoisolator to provide isolation against high common mode levels.

The LM231/LM331 utilize a new temperature-compensated band-gap reference circuit, to provide excellent accuracy over the full operating temperature range, at power supplies as low as 4.0V. The precision timer circuit has low bias currents without degrading the quick response necessary for 100 kHz voltage-to-frequency conversion. And the output are capable of driving 3 TTL loads, or a high voltage output up to 40V, yet is short-circuit-proof against VCC.

Features
- Guaranteed linearity 0.01% max
- Improved performance in existing voltage-to-frequency conversion applications
- Split or single supply operation
- Operates on single 5V supply
- Pulse output compatible with all logic forms
- Excellent temperature stability, ±50 ppm/˚C max
- Low power dissipation, 15 mW typical at 5V
- Wide dynamic range, 100 dB min at 10 kHz full scale frequency
- Wide range of full scale frequency, 1 Hz to 100 kHz
- Low cost

Typical Applications

![FIGURE 1. Simple Stand-Alone Voltage-to-Frequency Converter with ±0.03% Typical Linearity (f = 10 Hz to 11 kHz)](image-url)

*Use stable components with low temperature coefficients. See Typical Applications section.
**0.1μF or 1μF, See "Principles of Operation."
Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LM231A/LM231</th>
<th>LM331A/LM331</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>40V</td>
<td>40V</td>
</tr>
<tr>
<td>Output Short Circuit to Ground</td>
<td>Continuous</td>
<td>Continuous</td>
</tr>
<tr>
<td>Output Short Circuit to V(_{CC})</td>
<td>Continuous</td>
<td>Continuous</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>−0.2V to +V(_{S})</td>
<td>−0.2V to +V(_{S})</td>
</tr>
<tr>
<td>Operating Ambient Temperature Range</td>
<td>T(_{MIN}) to +85°C</td>
<td>0°C to +70°C</td>
</tr>
<tr>
<td>Power Dissipation (P(D) at 25°C) and Thermal Resistance (θ({JA}))</td>
<td>1.25W, θ(_{JA}) = 100°C/W</td>
<td>1.25W, θ(_{JA}) = 100°C/W</td>
</tr>
<tr>
<td>Lead Temperature (Soldering, 10 sec.)</td>
<td>260°C</td>
<td>260°C</td>
</tr>
<tr>
<td>ESD Susceptibility (Note 4)</td>
<td>N Package 500V</td>
<td>N Package 500V</td>
</tr>
</tbody>
</table>

Electrical Characteristics

\(T_A = 25°C\) unless otherwise specified (Note 2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFC Non-Linearity (Note 3)</td>
<td>4.5V ≤ V({S}) ≤ 20V, (T{MIN} \leq T_A \leq T_{MAX})</td>
<td>±0.003</td>
<td>±0.01</td>
<td>% Full-Scale</td>
<td></td>
</tr>
<tr>
<td>VFC Non-Linearity In Circuit of Figure 1</td>
<td>V(_{IN}) = 15V, f = 10 Hz to 11 kHz</td>
<td>±0.024</td>
<td>±0.14</td>
<td>% Full-Scale</td>
<td></td>
</tr>
<tr>
<td>Conversion Accuracy Scale Factor (Gain)</td>
<td>LM231, LM231A, V({IN}) = −10V, R({S}) = 14 kΩ</td>
<td>0.95</td>
<td>1.00</td>
<td>1.05</td>
<td>kHz/V</td>
</tr>
<tr>
<td>Temperature Stability of Gain</td>
<td>LM231/LM331, LM231A, LM331A/LM331A, 4.5V ≤ V({S}) ≤ 20V, (T{MIN} \leq T_A \leq T_{MAX})</td>
<td>±30</td>
<td>±150</td>
<td>ppm/°C</td>
<td></td>
</tr>
<tr>
<td>Change of Gain with V(_{S})</td>
<td>4.5V ≤ V({S}) ≤ 10V, 10V ≤ V({S}) ≤ 40V</td>
<td>±0.01</td>
<td>±0.1</td>
<td>%/V</td>
<td></td>
</tr>
<tr>
<td>Rated Full-Scale Frequency</td>
<td>(V_{IN}) = −10V</td>
<td>10.0</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Stability vs Time (1000 Hrs.)</td>
<td>(T_{MIN} \leq T_A \leq T_{MAX})</td>
<td>±0.02</td>
<td>% Full-Scale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overrange (Beyond Full-Scale) Frequency</td>
<td>(V_{IN}) = −11V</td>
<td>10.0</td>
<td>%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INPUT COMPARATOR

Offset Voltage	LM231/LM331, LM231A/LM331A, \(T_{MIN} \leq T_A \leq T_{MAX}\)	±3	±10	mV
Bias Current	−80 −300 nA			nA
Offset Current	±8 ±100 nA			nA
Common-Mode Range	\(T_{MIN} \leq T_A \leq T_{MAX}\)	−0.2	V\(_{CC}\)−2.0	V

TIMER

Timer Threshold Voltage, Pin 5	0.63	0.667	0.70	\(x\) V\(_{S}\)
Input Bias Current, Pin 5	\(V_{S}\) = 15V	±10	±100	nA
All Devices	0V ≤ \(V_{PIN}\) ≤ 9.9V, \(V_{PIN}\) = 10V	±10	±100	nA
LM231/LM331	\(V_{PIN}\) = 10V	200	1000	nA
LM231A/LM331A	\(V_{PIN}\) = 10V	200	500	nA

www.national.com
Electrical Characteristics (Continued)

\(T_A = 25^\circ C \) unless otherwise specified (Note 2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{SAT \ PIN 5}) (Reset)</td>
<td>(I = 5 \ mA)</td>
<td>0.22</td>
<td>0.5</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

CURRENT SOURCE (Pin 1)

| Output Current | \(R_s = 14 \ k\Omega, V_{PIN 1} = 0 \) | 126 | 135 | 144 | \(\mu A \) |
| | \(R_{s} = 14 \ k\Omega, V_{PIN 1} = 0 \) | 116 | 136 | 156 | \(\mu A \) |

| Change with Voltage | \(0V \leq V_{PIN 1} \leq 10V \) | 0.2 | 1.0 | | \(\mu A \) |

Current Source OFF Leakage

| LM231, LM231A, LM331, LM331A | 0.02 | 10.0 | | nA |
| All Devices | 2.0 | 50.0 | | nA |

| Operating Range of Current (Typical) | (10 to 500) | | | \(\mu A \) |

REFERENCE VOLTAGE (Pin 2)

| LM231, LM231A | 1.76 | 1.89 | 2.02 | \(V_{DC} \) |
| LM331, LM331A | 1.70 | 1.89 | 2.08 | \(V_{DC} \) |

| Stability vs Temperature | ±60 | ppm/°C |
| Stability vs Time, 1000 Hours | ±0.1 | % |

LOGIC OUTPUT (Pin 3)

\(V_{SAT} \)	\(I = 5 \ mA \)	0.15	0.50		V
\(I = 3.2 \ mA \) \ (2 TTL Loads), \(T_{MIN} \leq T_A \leq T_{MAX} \)	0.10	0.40		V	
\(V_{OFF \ Leakage} \)	±0.05	1.0		\(\mu A \)	

SUPPLY CURRENT

\(V_s = 5V \)	2.0	3.0	4.0		mA
\(V_s = 40V \)	2.5	4.0	6.0		mA
\(V_s = 5V \)	1.5	3.0	6.0		mA
\(V_s = 40V \)	2.0	4.0	8.0		mA

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.

Note 2: All specifications apply in the circuit of Figure 4, with \(4.0V \leq V_s \leq 40V \), unless otherwise noted.

Note 3: Nonliarity is defined as the deviation of \(f_{OUT} \) from \(V_{IN} \times (10 \ kHz / -10 \ V_{DC}) \) when the circuit has been trimmed for zero error at 10 Hz and 10 kHz, over the frequency range 1 Hz to 11 kHz. For the timing capacitor, \(C_T \), use NPO ceramic, Teflon, or polystyrene.

Note 4: Human body model, 100 pF discharged through a 1.5 kΩ resistor.
Functional Block Diagram

Pin numbers apply to 8-pin packages only.

FIGURE 2.
Typical Performance Characteristics

(All electrical characteristics apply for the circuit of Figure 4, unless otherwise noted.)

Nonlinearity Error as Precision V-to-F Converter (Figure 4)

Frequency vs Temperature

V_REF vs Temperature

Output Frequency vs VSUPPLY

100 kHz Nonlinearity Error (Figure 5)

Nonlinearity Error (Figure 1)

Input Current (Pins 6,7) vs Temperature
Typical Performance Characteristics (Continued)

![Power Drain vs V_{SUPPLY}](DS005690-34)

![Output Saturation Voltage vs I_{OUT} (Pin 3)](DS005690-35)

![Nonlinearity Error, Precision F-to-V Converter (Figure 7)](DS005690-36)

Typical Applications

PRINCIPLES OF OPERATION OF A SIMPLIFIED VOLTAGE-TO-FREQUENCY CONVERTER

The LM231/331 are monolithic circuits designed for accuracy and versatile operation when applied as voltage-to-frequency (V-to-F) converters or as frequency-to-voltage (F-to-V) converters. A simplified block diagram of the LM231/331 is shown in Figure 3 and consists of a switched current source, input comparator, and 1-shot timer.

The operation of these blocks is best understood by going through the operating cycle of the basic V-to-F converter, Figure 3, which consists of the simplified block diagram of the LM231/331 and the various resistors and capacitors connected to it.

The voltage comparator compares a positive input voltage, V1, at pin 7 to the voltage, V_x, at pin 6. If V1 is greater, the comparator will trigger the 1-shot timer. The output of the timer will turn ON both the frequency output transistor and the switched current source for a period \(t = 1.1 \frac{R_t C}{t} \). During this period, the current i will flow out of the switched current source and provide a fixed amount of charge, \(Q = i \times t \), into the capacitor, C_L. This will normally charge V_x up to a higher level than V1. At the end of the timing period, the current i will turn OFF, and the timer will reset itself.

Now there is no current flowing from pin 1, and the capacitor C_L will be gradually discharged by R_L until V_x falls to the level of V1. Then the comparator will trigger the timer and start another cycle.

The current flowing into C_L is exactly \(I_{AVE} = \frac{V_x}{R_L} \times \frac{1}{2} \times \frac{R_t}{R_L} \times t \), and the current flowing out of C_L is exactly \(V_x/R_L \equiv \frac{V_x}{R_L} \). If V_x is doubled, the frequency will double to maintain this balance. Even a simple V-to-F converter can provide a frequency precisely proportional to its input voltage over a wide range of frequencies.
Typical Applications (Continued)

condition will usually apply under start-up conditions or in the case of an overload voltage at signal input. It should be noted that during this sort of overload, the output frequency will be 0; as soon as the signal is restored to the working range, the output frequency will be resumed.

The output driver transistor acts to saturate pin 3 with an ON resistance of about 50 Ω. In case of overvoltage, the output current is actively limited to less than 50 mA.

The voltage at pin 2 is regulated at 1.90 V DC for all values of i between 10 µA to 500 µA. It can be used as a voltage reference for other components, but care must be taken to ensure that current is not taken from it which could reduce the accuracy of the converter.

PRINCIPLES OF OPERATION OF BASIC VOLTAGE-TO-FREQUENCY CONVERTER (Figure 1)
The simple stand-alone V-to-F converter shown in Figure 1 includes all the basic circuitry of Figure 3 plus a few components for improved performance.

A resistor, R IN = 100 kΩ ± 10 %, has been added in the path to pin 7, so that the bias current at pin 7 (~80 nA typical) will cancel the effect of the bias current at pin 6 and help provide minimum frequency offset.

The resistance R S at pin 2 is made up of a 12 kΩ fixed resistor (cermet, preferably) gain adjust rheostat. The function of this adjustment is to trim out the gain tolerance of the LM231/331, and the tolerance of R t, R L and C t.

For best results, all the components should be stable low-temperature-coefficient components, such as metal-film resistors. The capacitor should have low dielectric absorption; depending on the temperature characteristics desired, NPO ceramic, polystyrene, Teflon or polypropylene are best suited.

A capacitor C IN is added from pin 7 to ground to act as a filter for V IN. A value of 0.01 µF to 0.1 µF will be adequate in most cases; however, in cases where better filtering is required, a 1 µF capacitor can be used. When the RC time constants are matched at pin 6 and pin 7, a voltage step at V IN will cause a step change in f OUT. If C IN is much less than C IN, a step at V IN may cause f OUT to stop momentarily.

A 47Ω resistor, in series with the 1 µF C IN, is added to give hysteresis effect which helps the input comparator provide the excellent linearity (0.03% typical).

DETAIL OF OPERATION OF PRECISION V-TO-F CONVERTER (Figure 4)
In this circuit, integration is performed by using a conventional operational amplifier and feedback capacitor, C F.

When the integrator’s output crosses the nominal threshold level at pin 6 of the LM231/331, the timing cycle is initiated. The average current fed into the op amp’s summing point (pin 2) is i x (1.1 R tC t) x t which is perfectly balanced with −V IN /R IN. In this circuit, the voltage offset of the LM231/331 input comparator does not affect the offset or accuracy of the V-to-F converter as it does in the stand-alone V-to-F converter; nor does the LM231/331 bias current or offset current. Instead, the offset voltage and offset current of the operational amplifier are the only limits on how small the signal can be accurately converted. Since op amps with voltage offset well below 1 mV and offset currents well below 2 nA are available at low cost, this circuit is recommended for best accuracy for small signals. This circuit also responds immediately to any change of input signal (which a stand-alone circuit does not) so that the output frequency will be an accurate representation of V IN, as quickly as 2 output pulses’ spacing can be measured.

In the precision mode, excellent linearity is obtained because the current source (pin 1) is always at ground potential and that voltage does not vary with V IN or f OUT. (In the stand-alone V-to-F converter, a major cause of non-linearity is the output impedance at pin 1 which causes i to change as a function of V IN).

The circuit of Figure 5 operates in the same way as Figure 4, but with the necessary changes for high speed operation.
Typical Applications (Continued)

*Use stable components with low temperature coefficients. See Typical Applications section.

**This resistor can be 5 kΩ or 10 kΩ for VS = 8V to 22V, but must be 10 kΩ for VS = 4.5V to 8V.

***Use low offset voltage and low offset current op amps for A1: recommended type LF411A

FIGURE 4. Standard Test Circuit and Applications Circuit, Precision Voltage-to-Frequency Converter
In these applications, a pulse input at f_{IN} is differentiated by a C-R network and the negative-going edge at pin 6 causes the input comparator to trigger the timer circuit. Just as with a V-to-F converter, the average current flowing out of pin 1 is $I_{\text{average}} = i \times (1.1 \frac{R}{C}) \times f$.

In the simple circuit of Figure 6, this current is filtered in the network $R_L = 100 \, \Omega$ and $1 \, \mu F$. The ripple will be less than $10 \, \text{mV}$ peak, but the response will be slow, with a 0.1 second time constant, and settling of 0.7 second to 0.1% accuracy.

In the precision circuit of Figure 6, this current is filtered in the network $R_L = 100 \, \text{k} \Omega$ and $1 \, \mu F$. The ripple will be less than $5 \, \text{mV}$ peak for all frequencies above 1 kHz, and the response time will be much quicker than in Figure 6. However, for input frequencies below 200 Hz, this circuit will have worse ripple than Figure 6. The engineering of the filter time-constants to get adequate response and small enough ripple simply requires a study of the compromises to be made. Inherently, V-to-F converter response can be fast, but F-to-V response can not.

*Use stable components with low temperature coefficients. See Typical Applications section.

**This resistor can be 5 kΩ or 10 kΩ for $V_S = 8 \text{V}$ to 22 V, but must be 10 kΩ for $V_S = 4.5 \text{V}$ to 8 V.

***Use low offset voltage and low offset current op amps for A1: recommended types LF411A or LF356.

FIGURE 5. Precision Voltage-to-Frequency Converter, 100 kHz Full-Scale, ±0.03% Non-Linearity
Typical Applications (Continued)

V_{OUT} = f_{IN} \times 2.09V \times \frac{R_{L}}{R_{SG}} \times (R_{t}C_{t})

*Use stable components with low temperature coefficients.

FIGURE 6. Simple Frequency-to-Voltage Converter, 10 kHz Full-Scale, ±0.06% Non-Linearity

FIGURE 7. Precision Frequency-to-Voltage Converter, 10 kHz Full-Scale with 2-Pole Filter, ±0.01% Non-Linearity

Light Intensity to Frequency Converter

Temperature to Frequency Converter

*L14F-1, L14G-1 or L14H-1, photo transistor (General Electric Co.) or similar
Typical Applications (Continued)

Long-Term Digital Integrator Using VFC

Basic Analog-to-Digital Converter Using Voltage-to-Frequency Converter

Analog-to-Digital Converter with Microprocessor

Remote Voltage-to-Frequency Converter with 2-Wire Transmitter and Receiver
Typical Applications (Continued)

Voltage-to-Frequency Converter with Square-Wave Output Using + 2 Flip-Flop

Voltage-to-Frequency Converter with Isolators

Voltage-to-Frequency Converter with Isolators

www.national.com
Typical Applications (Continued)

Voltage-to-Frequency Converter with Isolators

Connection Diagram

Dual-In-Line Package

Order Number LM231AN, LM231N, LM331AN, or LM331N
See NS Package Number N08E
LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.